3 research outputs found

    LaDIVA: A neurocomputational model providing laryngeal motor control for speech acquisition and production

    Get PDF
    Many voice disorders are the result of intricate neural and/or biomechanical impairments that are poorly understood. The limited knowledge of their etiological and pathophysiological mechanisms hampers effective clinical management. Behavioral studies have been used concurrently with computational models to better understand typical and pathological laryngeal motor control. Thus far, however, a unified computational framework that quantitatively integrates physiologically relevant models of phonation with the neural control of speech has not been developed. Here, we introduce LaDIVA, a novel neurocomputational model with physiologically based laryngeal motor control. We combined the DIVA model (an established neural network model of speech motor control) with the extended body-cover model (a physics-based vocal fold model). The resulting integrated model, LaDIVA, was validated by comparing its model simulations with behavioral responses to perturbations of auditory vocal fundamental frequency (fo) feedback in adults with typical speech. LaDIVA demonstrated capability to simulate different modes of laryngeal motor control, ranging from short-term (i.e., reflexive) and long-term (i.e., adaptive) auditory feedback paradigms, to generating prosodic contours in speech. Simulations showed that LaDIVA’s laryngeal motor control displays properties of motor equivalence, i.e., LaDIVA could robustly generate compensatory responses to reflexive vocal fo perturbations with varying initial laryngeal muscle activation levels leading to the same output. The model can also generate prosodic contours for studying laryngeal motor control in running speech. LaDIVA can expand the understanding of the physiology of human phonation to enable, for the first time, the investigation of causal effects of neural motor control in the fine structure of the vocal signal.Fil: Weerathunge, Hasini R.. Boston University; Estados UnidosFil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Cler, Gabriel J.. University of Washington; Estados UnidosFil: Guenther, Frank H.. Boston University; Estados UnidosFil: Stepp, Cara E.. Boston University; Estados UnidosFil: Zañartu, Matías. Universidad Técnica Federico Santa María; Chil

    A Simple 3-Parameter Model for Examining Adaptation in Speech and Voice Production

    No full text
    Sensorimotor adaptation experiments are commonly used to examine motor learning behavior and to uncover information about the underlying control mechanisms of many motor behaviors, including speech production. In the speech and voice domains, aspects of the acoustic signal are shifted/perturbed over time via auditory feedback manipulations. In response, speakers alter their production in the opposite direction of the shift so that their perceived production is closer to what they intended. This process relies on a combination of feedback and feedforward control mechanisms that are difficult to disentangle. The current study describes and tests a simple 3-parameter mathematical model that quantifies the relative contribution of feedback and feedforward control mechanisms to sensorimotor adaptation. The model is a simplified version of the DIVA model, an adaptive neural network model of speech motor control. The three fitting parameters of SimpleDIVA are associated with the three key subsystems involved in speech motor control, namely auditory feedback control, somatosensory feedback control, and feedforward control. The model is tested through computer simulations that identify optimal model fits to six existing sensorimotor adaptation datasets. We show its utility in (1) interpreting the results of adaptation experiments involving the first and second formant frequencies as well as fundamental frequency; (2) assessing the effects of masking noise in adaptation paradigms; (3) fitting more than one perturbation dimension simultaneously; (4) examining sensorimotor adaptation at different timepoints in the production signal; and (5) quantitatively predicting responses in one experiment using parameters derived from another experiment. The model simulations produce excellent fits to real data across different types of perturbations and experimental paradigms (mean correlation between data and model fits across all six studies = 0.95 ± 0.02). The model parameters provide a mechanistic explanation for the behavioral responses to the adaptation paradigm that are not readily available from the behavioral responses alone. Overall, SimpleDIVA offers new insights into speech and voice motor control and has the potential to inform future directions of speech rehabilitation research in disordered populations. Simulation software, including an easy-to-use graphical user interface, is publicly available to facilitate the use of the model in future studies.</p
    corecore